
Semi-Supervised DFF: Decoupling Detection and Feature Flow
for Video Object Detectors
Guangxing Han, Xuan Zhang∗, Chongrong Li

Beijing National Research Center for Information Science and Technology (BNRist),
Institute for Network Sciences and Cyberspace (INSC),

Tsinghua University, Beijing, 100084, China.
hgx14@mails.tsinghua.edu.cn,{zhangx,licr}@cernet.edu.cn

ABSTRACT
For efficient video object detection, our detector consists of a spa-
tial module and a temporal module. The spatial module aims to de-
tect objects in static frames using convolutional networks, and the
temporal module propagates high-level CNN features to nearby
frames via light-weight feature flow. Alternating the spatial and
temporal module by a proper interval makes our detector fast and
accurate. Then we propose a two-stage semi-supervised learning
framework to train our detector, which fully exploits unlabeled
videos by decoupling the spatial and temporal module. In the first
stage, the spatial module is learned by traditional supervised learn-
ing. In the second stage, we employ both feature regression loss
and feature semantic loss to learn our temporal module via un-
supervised learning. Different to traditional methods, our method
can largely exploit unlabeled videos and bridges the gap of object
detectors in image and video domain. Experiments on the large-
scale ImageNet VID dataset demonstrate the effectiveness of our
method. Code will be made publicly available.
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1 INTRODUCTION
Currently, object detection [6, 17, 35, 42] has achieved significant
success due to the rapid development of deep convolutional neu-
ral networks (DCNNs [18, 20, 30, 49, 50]). Both fully convolutional
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Figure 1: Overview of our video object detector. Our video
object detector consists of a spatial module and a temporal
module. In spatial module, Nf eat and Ntask is short for the
feature network and task network respectively, and they de-
tect objects in static frames. The temporal module is the fea-
ture flow network F , which propagates CNN features to ad-
jacent frames. Our detector is fast and accurate by combin-
ing these two modules efficiently. We also propose a novel
semi-supervised learning framework to train our detector
by decoupling these two modules.

architecture design and end-to-end joint training push object de-
tection to real-time speed and state-of-the-art accuracy on several
datasets, e.g., PASCAL VOC [8], MS COCO [33] and ILSVRC [45].

Considering the maturity of object detection in static images,
it’s natural to extend its domain from images to videos. Different
from detecting objects in static images, videos provide additional
temporal information [57] beyond static appearance features. Naive
frame-by-frame independent detection usually requires unafford-
able computational cost. Thus exploiting temporal coherence for
fast and accurate object detection is critical in many real-time ap-
plications, e.g., autonomous driving. In addition, dense labeling in
large scale of video data is laborious and difficult to acquire. Only
relatively small video snippets (3862 training snippets in [45]) or
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sparse ground truth labels (1 labeled frame per second in [40])
are available for video object detection tasks in the research com-
munity. More attention should be paid to unsupervised or semi-
supervised learning in videos.

In this paper, we propose to learn fast and accurate video object
detectors by leveraging the rich information in unlabeled video
data. We will next briefly describe our motivation and approach in
how to learn fast and accurate video object detectors respectively.
First, different to the naive per-frame independent detection, we
exploit the inherent temporal coherence of video data for fast de-
tection in videos. Consecutive frames in a video usually have simi-
lar appearance, and therefore fully exploiting this property is very
promising for video object detectors. Fortunately, the elegant de-
sign of modern object detectors is particularly suitable to exploit
temporal information. Modern object detectors [21], based on R-
CNN framework [12], usually consist of two parts: image feature
extraction sub-network and RoI-wise classification sub-network.
In the current state-of-the-art object detectors such as R-FCN [6],
most of the calculations are spent on the feature extraction stage,
which usually consists of hundreds of convolutional layers (e.g.,
ResNet-101 [18]). Convolutional networks can extract high-level
semantic features through hierarchical abstraction and naturally
preserve spatial correspondences between the images and CNN
features. Shelhamer et al. [46] show that high-level features evolve
more slowly compared to raw video pixels. Based on these observa-
tions, we divide object detectors into a deep, costly feature network
and a shallow, cheap task network [11]. Then we only compute
features on sparse key frames, and employ light-weight feature
flow [63] to propagate CNN features along the temporal dimen-
sion through spatial warping [23]. The task network is applied to
all the frames. Considering the cheap operations of feature flow
and task network, we can largely speed up the running speed of
object detection in videos.

Then the key problem can be described as estimating accurate
feature flow between adjacent frames given the current and future
frames as well as the CNN features of the current frame. Once
we get the transformation network, we can easily propagate CNN
features to future frames fast. Therefore the quality of the esti-
mated feature flow directly affect the accuracy of our video ob-
ject detectors. Different from optical flow, feature flow estimates
the motion of high-level semantic concepts, and should be more
smoother than the motion of original pixels. In addition, unlike op-
tical flow [7], it’s challenge to label ground truth feature flow even
on synthetically generated datasets. DFF [63] builds the feature
flow module and detection module into an end-to-end trainable
network, and learns the feature flow network jointly with detec-
tion network. Although only sparsely annotated frames in videos
are needed, DFF relies on ground truth boxes in videos to supervise
the learning. Consequently DFF is restricted to scenarios where la-
beled videos are available, and cannot fully leverage the power of
large scale of unlabeled videos.

To cope with this problem, we propose to decouple the learning
of detection and feature flow networks in our video object detec-
tion system. Concretely, we learn to detect objects and estimate
high-level feature flow separately in a two-stage semi-supervised
learning framework. In the first stage, we learn the parameters of
the detection network by traditional supervised method [6]. It’s

rather simple to train state-of-the-art object detectors employing
the current techniques [21]. In the second stage, we propose an
unsupervised learning algorithm for the feature flow network by
leveraging large scale of unlabeled videos. More specifically, we
make full use of the trained state-of-the-art object detectors in the
first stage (teacher model), and learn feature flow estimation by
transferring the knowledge from the teacher model to our video
object detectors (student model). Traditional unsupervised optical
flow estimation [58] minimizes the loss function of flow warp er-
ror calculated by the pixel difference of the warped image and
ground truth image. This method is also applicable to our feature
flow. However, it’s hard to directly minimizing the regression loss
of high-dimensional CNN features and estimate feature flow suit-
able for our detection task. Inspired by perceptual loss in [27] and
knowledge distillation in [19], we propose to minimize the seman-
tic loss of warped feature specific to our detection task, which is
also guided by our teacher model. Furthermore, we combine these
two losses in a two-step optimization method and achieve better
results than either of them.

In summary, our proposed semi-supervisedDFF, denoted as semi-
DFF, decouples the spatial and temporal modules in our video ob-
ject detector, and is very promising considering its ability to lever-
age unlabeled videos. Furthermore, semi-DFF bridges the gap of
object detection in image and video domain, and can serve as a
more general framework for transferring static image recognition
networks to video domain. To evaluate our method, we conduct
several experiments of different experimental settings on video ob-
ject detection task. Comprehensive experiments demonstrate the
superiority of our semi-DFF on both running speed and detection
accuracy compared to a large variety of strong competitors.

Our main contributions are in three folds.

(1) We propose semi-DFF, a novel general semi-supervised learn-
ing framework for fast and accurate video object detection,
which decouples the learning of detection and feature flow
network, and bridges the gap between state-of-the-art ob-
ject detectors in images and videos.

(2) For unsupervised feature flow estimation, we employ regres-
sion loss as well as novel semantic loss in a two-step opti-
mization method, which can fully exploit rich knowledge in
unlabeled videos to learn better feature flow.

(3) We comprehensively evaluate our proposed method on Im-
ageNet VID validation dataset. Our method achieves largely
speedup (4× faster) and minor accuracy decrease compared
to the strong frame-by-frameR-FCNbaseline.We also achieve
superior performance in accuracy and running speed trade-
offs compared to single shot detectors. Furthermore, our semi-
supervised method also outperforms the purely supervised
DFF given more unlabeled videos.

2 RELATEDWORK
Object Detection in Images. Currently, object detectors can be
grouped into two main families: two-stage detectors [6, 15, 17, 42]
and single shot detectors [16, 34, 35, 41]. Two-stage detectors, e.g.,
Faster R-CNN [42] andMask R-CNN [17], divide detection into two
stages: region proposal generation (RPN [42]) and RoI-wise clas-
sification (R-CNN [11, 12]). This cascade design usually achieves
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higher detection accuracy. R-FCN [6] further shares the calculation
in the 2nd stage by introducing a position-sensitive RoI pooling
layer, which greatly reduce the computation time and also enjoys
high accuracy. Single shot detectors, e.g., YOLOv2 [41] and SSD
[35], directly predict boxes from input images using fully convo-
lutional networks [37]. This single shot design usually achieves
higher running speed but has certain descend of accuracy [21]. In
this paper, we employ R-FCN [6] as our default object detector con-
sidering the balance of speed and accuracy. We also note that our
contributions are architecture-independent, and therefore can be
applicable for any detection networks mentioned above.

Object Detection in Videos. Video object detection is a rela-
tively new topic and is mainly promoted by ImageNet VID chal-
lenge. A large variety of methods [9, 28, 29] focus on associating
independent detection results of multiple frames to get more stable
and accurate detection accuracy. Different to this, another kind of
methods work on feature-level to accelerate detection speed or im-
prove detection accuracy. Shelhamer et al. [46] propose clockwork
ConvNets to schedule different layers at different update rates. How-
ever, neglecting the evolution of high level features usually lead to
worse recognition accuracy. Zhu et al. [63] firstly propose to re-
use sparsely sampled CNN features, and propagate the features to
adjacent frames via a light-weight flow field. Following this idea,
[10, 62] densely aggregate features from adjacent frames to en-
hance the feature quality at all frames. Recent works [53, 61] com-
bine the merits of [62, 63] and strike a balance between accurate
feature aggregation and fast feature propagation modules for all
frames. However, all these methods need ground truth boxes in
video data for training.Wemake several contributions for learning
feature flow to propagate CNN features between adjacent frames
via unsupervised learning. Hence we can transfer arbitrary pre-
trained image object detectors to fast and accurate video object
detectors using unlabeled video data.

Optical Flow in Video based Applications. Optical flow [7]
estimates pixel-level correspondences between two input images,
and further captures motion information in videos. Therefore op-
tical flow is widely used in many computer vision tasks such as
video interpolation/extrapolation [36], novel view synthesis [60],
action recognition [48] and temporal smoothing in dense video
processing tasks [3, 14]. We focus on feature prediction of adjacent
frames in this paper. While high-level CNN features evolve slowly
in video, it’s cheep to copy features from nearby frames. [10, 62, 63]
employs optical flow to align different frames and then propagate
CNN features to adjacent frames, thus improving the accuracy or
speed for video processing tasks. We mainly follow this idea in our
paper. Accurately estimating flow of high-level features between
nearby frames using unlabeled videos is a core part in our video
object detection systems.

Predictive Learning. Learning to prediction is an important
problem of artificial intelligence, and therefore receives a grow-
ing attention in recent years. Researchers have explored a variety
of specific problems such as future frame prediction [32, 39, 52],
scene parsing prediction [25, 26, 38], feature prediction [51, 54].
The encoder-decoder network [22, 39] is a general architecture for
prediction tasks. Novel training techniques like adversarial learn-
ing [13, 22] are introduced to learn better predictions beyond tra-
ditional L1/L2 regression loss [39, 51]. However, blur is often a

problem for these generative techniques. Optical flow based mod-
els still show comparable results considering the balance of speed,
accuracy and model simplicity [32, 38, 39]. Our problem is also
a prediction task, but has slightly different problem settings. The
input images of the current and future frames, together with the
CNN features of the current frames are known, we attempt to pre-
dict CNN features in the future frames. Our work shows promising
results for feature prediction using optical flow based method.

Unsupervised Learning ofOptical Flow.Usually ground truth
motion estimations are not easily to obtain. Therefore it is valu-
able to exploit rich information in unlabeled videos to learn op-
tical flow. Recently self-supervised learning [24, 55, 57] has been
proposed as a novel unsupervised learning method. The key idea
is to leverage the inherent structure of raw images or videos to for-
mulate a strong supervision signal for training. Following this idea,
[1, 43, 58] learn optical flow from unlabeled videos using assump-
tions of brightness constancy and spatial smoothness. In this paper,
we aim to learn high-level feature flow for fast and accurate video
object detectors using self-supervised learning and also make sev-
eral contributions to learn accurate feature flow in our problem,
which demonstrates to be very effective in our experiments.

Knowledge Distillation. Knowledge distillation (KD) [19] is
originally proposed to transfer knowledge from large or ensem-
ble networks to a smaller one for efficient deployment. Compared
with one-hot labels, softened outputs of the teacher provide ex-
tra knowledge of inter-class similarities. However, original KD is
only limited to softmax function and classification tasks. Subse-
quent works [44, 56] attempts to transfer intermediate features of
the teacher as ‘hint’ to train student models. Zagoruyko et al. [59]
proposes to transfer spatial attention maps from teacher to student
network. Beyond classification task, Chen et al. [4] compress large
object detection models into smaller ones. Li et al. [31] employs
KD to add new capabilities to an existing model while maintaining
performance for old capabilities. Shmelkov et al. [47] employs KD
for incremental learning in object detection and avoid catastrophic
forgetting problems. Chen et al. [2] leverage rich source-domain
knowledge to build target-domain detector in low-shot setting. In-
spired by these successful applications of KD, we explore a new
task, learning the temporal module of video object detectors from
pre-trained image object detectors using unlabeled videos.

3 SEMI-SUPERVISED DFF
In this section, we first give an overview of our proposed semi-
DFF in Section 3.1. Then we describe our method in detail, starting
with the spatial module, the default object detector R-FCN in static
images in Section 3.2. After this, we present the temporal module
and describe the detailed architecture of our feature flow network
in Section 3.3. Then we introduce our semi-supervised learning
framework and the unsupervised feature flow estimation in Sec-
tion 3.4. Finally we give some important implementation details of
our semi-DFF in Section 3.5.

3.1 semi-DFF Overview
Our goal is to learn fast and accurate object detectors in video do-
main and make full use of unlabeled video data. To achieve this
goal, first our video object detector has a spatial module as well as a
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Figure 2: Illustration of our proposed two-stage semi-supervised learning framework. In the first stage, we learn the spatial
module using supervised learning with ground truth labeled images. In the second stage, the static image object detector
learned in the first stage is regarded as the teacher model. We adopt both feature regression loss and feature semantic loss to
learn accurate feature flow using unlabeled videos with the help of the teacher model.

temporal module, and alternately runs two modules at a proper in-
terval. Then we propose a novel semi-supervised learning method
to train our detector using unlabeled videos. Our method is a sim-
ple and general detection framework which bridges the gap of ob-
ject detectors in image and video domain, and therefore can easily
transfer state-of-the-art object detectors between two domains.

More specifically, we have two decoupled but also closely re-
lated modules in our semi-DFF: spatial module and temporal mod-
ule. The spatial module is a state-of-the-art object detector which
can recognize objects in static images. It’s accurate but may be
too slow if we densely evaluate every frame in a video due to
the high computational burden of modern object detectors [21].
High-level CNN feature extraction is the bottleneck for fast detec-
tion. However, high-level CNN features usually evolve very slowly
due to temporal coherence [46], we thus introduce the temporal
module to reuse CNN features for nearby frames in a video. Fea-
ture flow [63] is employed to propagate CNN features between
adjacent frames in our temporal module. Different from the tra-
ditional purely supervised video object detectors [63], our semi-
DFF adopts supervised learning for spatial module and unsuper-
vised learning for the temporal module respectively. Hence we can
leverage the rich information in unlabeled video data. In the follow-
ing sections, we will describe the network architecture and semi-
supervised learning framework in details.

3.2 Spatial Module: Detection Network
We adopt R-FCN as our default detection network. R-FCN is the
state-of-the-art object detection framework for static images con-
sidering the balance of running speed and detection accuracy. It
can be divided into two parts: image feature extraction network
and detection specific networks. With the rapid development of
DCNNs [18, 20], hundreds of convolutional layers are employed for
strong and robust feature extraction. On top of the feature extrac-
tion network, RPN is used to generate proposals in the image with
pre-defined multi-scale candidate boxes (anchors in [42]). Position-
sensitive maps are built to encode the relative spatial position of
objects. Both of RPN and Position-sensitive maps are fully con-
volutional and nearly cost-free computation. After this, position-
sensitive RoI pooling layers further classify proposals and refine
their coordinates using position-sensitive maps.

Concretely, given an input frame I ∈ RH0×W0×3, a backbone fea-
ture extraction network (e.g., ResNet-101 [18]) is used to obtain
CNN features f ∈ RCl×Hl×Wl , where Cl , Hl ,Wl are the channel,
height, width of features output at layer l . In the detection spe-
cific networks, object proposals are generated using RPN. Then
k2 (C + 1) position-sensitive score maps and 4k2 position-sensitive
regression maps, corresponding to a k × k spatial grid, are pro-
duced for proposal classification (C categories) and (class-agnostic)
bounding box regression. Finally, position-sensitive RoI pooling
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layers are adopted to aggregate position-sensitive maps for final
prediction.

3.3 Temporal Module: Feature Flow Network
In our temporal module, we aim to predict high-level CNN features
f̂p ∈ RCl×Hl×Wl of nearby future frame fast and accurately given
the current frame (key frames) Ik and future frame Ip as well as
the high-level CNN features fk of the current frame Ik in a video,
and their temporal interval is ∆T = p−k . The temporal interval be-
tween key frames is an important parameter in our model. Predict-
ing future CNN features using a light-weight network can largely
accelerate our video object detectors. However, it’s usually hard to
directly hallucinate target CNN features using generative encoder-
decoder networks [32, 36].While high-level features change slowly
in a video, we attempt to explicitly model the motion dynamics
of nearby frames, and then cheaply propagate CNN features to
nearby frames via feature flow.

Therefore estimating accurate feature flow is the key problem in
our temporal moduleTθ , where θ is the parameters.We employ the
modern CNN based optical flow estimation architecture FlowNet
[7] (the “Simple” version), and automatically learn to compute the
high-level feature flow F (Ik , Ip ) using the current frame Ik and
future frame Ip . The estimated feature flow has the same spatial
dimensions as the CNN feature maps. Then bilinear interpolation
W is adopted to propagate CNN features simultaneously for all the
channels. To better accommodate the amplitudes of CNN features,
we multiply the predicted features of all channels with a learned
scale field S (Ik , Ip ) of the same size in an element-wise way. Thus
the predicted feature f̂p is

f̂p = Tθ (Ik , Ip , fk ) =W (fk ,F (Ik , Ip )) ∗ S (Ik , Ip ) (1)

where the bilinear interpolationW is parameter-free and can be
differentiated during training [23].

3.4 Semi-Supervised Learning Framework
For training our detector, the proposed two-stage semi-supervised
learning framework is illustrated in Figure 2.

In the first stage, we train our spatial module using supervised
learning. We assume that ground truth boxes are available for ev-
ery training images in this stage. Hence we can learn the param-
eters of R-FCN end-to-end by jointly optimizing RPN and FRCN
[11] modules using ground truth boxes. The supervised learning
loss consists of two parts:

L1 = LRPN (P1,p
∗
1 ,b1,b

∗
1 ) + LFRCN (P2,p

∗
2 ,b2,b

∗
2 ) (2)

and the loss function of RPN and FRCN is both the summation of
cross-entropy loss and smooth L1 box regression loss [11]:

L(P ,p∗,b,b∗) = lcls (P ,p
∗) + lr eд (b,b∗) (3)

where P andp∗ are the predicted probability distribution and ground
truth label (one hot label) of anchor box or proposal [42], and there-
fore lcls (P ,p∗) = − log Pp∗ . b and b∗ are the predicted bounding
box (bbox) and ground truth bbox respectively. Background pro-
posals are ignored in bbox loss.

In the second stage, we train our temporal module in unsuper-
vised learning with unlabeled videos. Prior works on unsupervised
learning of optical flow [58] tries to minimize the loss function

of flow warp error between the flow-guided warped image and
ground truth image. We can also use this method for unsupervised
learning of feature flow. Here, we exploit the pre-trained spatial
module R-FCN in the first stage as teacher model to get teacher
CNN features fp for frame Ip . Then, the teacher CNN features can
be directly employed to supervise the predicted features of our tem-
poral module using Euclidean distance loss:

Lreд (fp ,f̂p ) =
1

ClHlWl
| |fp − f̂p | |22

=
1

ClHlWl

Cl∑
c=1

Hl∑
h=1

Wl∑
w=1

(fp (c,h,w ) − f̂p (c,h,w ))2
(4)

However, it’s hard to directly minimizing the L1 or L2 regression
loss of high-dimensional CNN features (e.g. 1024 ∗ H/16 ∗W /16
in our experiments) and also the estimate feature flow may not
be suitable for our detection task. Inspired by perceptual loss in
[27] and knowledge distillation in [19], we propose to minimize
the semantic loss of predicted feature specific to our detection task.
which is defined as the summation of RPN and FRCN losses guided
by the R-FCN model learned in stage one:

Lsem = LRPN (Ps1, Pt1,bs1,bt1) + LFRCN (Ps2, Pt2,bs2,bt2) (5)
L(Ps , Pt ,bs ,bt ) = lcls (Ps , Pt ) + λlr eд (bs ,bt ) (6)

where Ps and Pt are the predicted probability distribution of the
student and teacher model respectively and T is the temperature
parameter introduced in [19] to soften the softmax output:

Ps = so f tmax (
as
T

), Pt = so f tmax (
at
T

) (7)

Here, as and at are softmax pre-activations. Original softmax is
the special case ofT = 1. Higher temperatureT will produce softer
probability distribution over classes, and also introducesmore noise
in learning. We will study the effect of the parameters in ablation
experiments. The cross-entropy loss between Ps and Pt is:

lcls (Ps , Pt ) = −
∑

Pt log Ps (8)

In addtion, bs and bt are bbox regression results for the student
and teacher model, we employ Euclidean distance loss to estimate
the semantic loss for bbox refinements:

lreд (bs ,bt ) = | |bs − bt | |22 (9)

Different from the supervised learning in the first stage, we adopt
unsupervised learning in the second stage without any ground
truth labels. We learn the temporal module by forcing the CNN
feature predicted to have similar semantic capability as the feature
calculated by teacher model. Using semantic loss, we transfer three
kinds of knowledge from the teacher model to the student. First
of all, inter-class relationship. Since our model aims to predict
multi-class objects, the student model can learn better inter-class
relationship by mimicking the soft target [19] computed by the
teacher model for each pre-computed proposal from the teacher.
Secondly, attention maps. RPN naturally computes heat maps
of input images, which represents the probability of foreground
at each location. Thus transferring this knowledge in our detec-
tion problem actually works in a very similar way of transferring
attention which is proposed in [59] for classification problem. Fi-
nally, bbox accurate locations. We also transfer the knowledge
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of the bbox regression both in RPN and FRCN due to bbox regres-
sion is very important for precise object location [11], and it’s also
an easier task than classification since bbox refinements are class-
agnostic in our model.

Finally, we also experiment with various methods to cooperate
these two losses, and find that a two-step optimization give the
best results. We first useLr eд to obtain a pretty good initial model.
Then we employ Lsem to fine-tune the model, and the task net-
work (RPN and FRCN in spatial module) is also fine-tuned.

3.5 Implementation Details
In our spatial module R-FCN, we adopt ResNet-101 [18] as our
backbone network. We resize the input image such that its shorter
side is 600 pixels and keep the aspect ratio. The feature stride is re-
duced from 32 to 16 to produce denser feature maps. A 3×3 convo-
lution is appended to res5c to get the final features with 1024 chan-
nels, which is the intermediate feature maps for detection specific
network. The first half 512-dimensional of the intermediate fea-
ture maps is used for region proposal generation and the second
half feature maps for proposal classification and refinement. We
mainly follow the hyper-parameters and training details in [6].

In our temporal module, we adopt FlowNetS architecture [7]
for feature flow network as default. To keep the same resolution of
the flow and CNN features ( 116 ×

1
16 of the original images), addi-

tional pooling or convolutional layers with stide of 2 are inserted
to the feature flow network. We compute the reverse flow map-
ping the locations in future frames to the locations in key frames
as we want to warp key-frame CNN features. Different from [63],
we don’t employ any pre-trained FlowNet models in our training
by default. Feature flow network is initialized randomly by Nor-
mal distribution with standard deviation 0.02. Key frames interval
is set to ∆T = 10 by default for the balance of speed and accuracy.
In our two-step optimization method, the temperature is set to 1
and also λ = 1. We adopt RMSprop solver to optimize our model
in both steps, and the learning rate is set to 5 × 10−5 by default.

Our implementation adopt the publicly available code of [63]
and MXNet deep learning framework [5]. Code will be made pub-
licly available to facilitate future research after publication.

4 EXPERIMENTAL RESULTS
Wecomprehensively evaluate ourmethod on ImageNet VID dataset.
The VID dataset has 3862, 555, and 937 fully-annotated video snip-
pets for the training, validation, and test sets respectively. The
frame rate is 25 or 30 fps for most snippets. There are 30 object
categories, and they are a subset of the categories in the ImageNet
DET dataset. To train R-FCN in static images, we also utilize Ima-
geNet DET training dataset (only the same 30 category labels are
used), as a common practice in [29, 63]. Following the protocols
in [29, 63], evaluations are performed on the ImageNet VID valida-
tion set, andwe report our results using the standardmean average
precision (mAP) metric over all classes at IoU = 0.5 and running
speed tested in TITAN X Maxwell GPU.

We evaluate our method in two different experimental settings.
First, we only have ground truth boxes for static images. Second,
we have true boxes for both static images and video data. In ad-
dition, unlabeled videos are available in all experiments. We also

Approach mAP (%) runtime (fps)
R-FCN frame 59.31 7.5
R-FCN copy 54.12 60
R-FCN flow 55.05 30
semi-DFF reg 57.51 30
semi-DFF sem 58.15 30
semi-DFF 58.68 30

Table 1: Performance comparison on the ImageNet VID validation
set. All methods use the same R-FCN model which is trained us-
ing labeled images in ImageNet DET training set. Our semi-DFF
further adopts unlabeled videos in ImageNet VID training set for
semi-supervised learning. We compare our semi-DFF with baseline
methods described in Section 4.1. The mean average precision over
all classes and running speed are shown for a variety of methods.

Approach mAP (%) runtime (fps) labeled videos
R-FCN frame 59.31 7.5
YOLOv2-416 51.65 67

SSD300 56.33 45
DFF [63] 59.54 30 ✓
semi-DFF 58.68 30

Table 2: Performance comparison with state-of-the-art methods.
All methods use labeled images in ImageNet DET training set ex-
cept that semi-DFF employs unlabeled videos and DFF [63] needs
labeled videos in ImageNet VID training set for training.

conduct ablation experiments in the first experimental setting to
analyze deep into our semi-DFF.

4.1 True labels for only images
In this experiment, we only have ground truth labels for static im-
ages (totally 53639 training images in ImageNet DET training set
of the same category in VID), and this is the default setting in our
semi-supervised learning framework. In the first stage, we train
R-FCN using the labeled images available via supervised learning.
After learning the spatial module, we train the temporal module us-
ing unlabeled videos in ImageNet VID training dataset and adopt
the settings in 3.5.

Baseline evaluation.We compare our semi-DFFwith a variety
of baselines and variants as below.
• R-FCN frame.We simply evaluate each frame independently
using the trained R-FCN model. This is a strong baseline
without any feature propagation module.
• R-FCN copy. In this case, only key frames are evaluatedwith
R-FCN model, The detection results of other frames are just
copies of nearby key frames.
• R-FCN flow. The key frames is evaluated by R-FCN model,
and CNN features of nearby frames are propagated using
the FlowNetS model pre-trained in Flying Chairs [7].
• semi-DFF reg. In this case, we train the temporal module
only using feature regression loss in our semi-DFF.
• semi-DFF sem. Here we train the temporal module only us-
ing feature semantic loss in semi-DFF.
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(a) Feature Prediction Architecture: Our
flow-based method is more effective.

Architecture mAP (%)
generative method 54.79
flow-based method 57.51

(b) FeatureRegression Loss: Three feature regres-
sion losses are explored and L2 loss works best.

Feature Regression Loss mAP (%)
steady feature loss [24] 54.13

L1 regression loss 55.55
L2 regression loss 57.51

(c) Feature Semantic Loss: Ablation study of feature semantic loss.

Feature Semantic Loss
inter-class relationship ✓ ✓ ✓ ✓

attention maps ✓ ✓
bbox accurate location ✓ ✓

mAP (%) 55.54 55.76 57.75 58.15

(d) Temperature: Our model is insensitive toT .

Temperature mAP (%)
T = 1 58.15
T = 2 58.07
T = 4 58.16
T = 10 57.85

logits regression (T = ∞) 57.81

(e) Fine-tune Layers: In our feature semantic loss, we find
that training temporal model as well as the task network,
other layers frozen, works best.

Fine-tune Layers mAP (%)
temporal module 57.94

temporal module + spatial module 53.38
temporal module + task network 58.15

(f) Training Method: Our two-step opti-
mizationmethod outperforms the joint
training method.

Training Method mAP (%)
joint training 58.08

two-step training 58.68

(g) Key-frame Interval: The accuracy and
speed trade-offs of our model are shown for a
wide range of key-frame intervals.

Interval mAP (%) runtime (fps)
5 59.05 20
10 58.68 30
15 57.68 34
20 57.35 36

Table 3: Ablations for the second stage learning of our semi-DFF. We use sampled frame pairs from ImageNet VID training set
as in [63], test on ImageNet VID validation set, and report mAP and runtime for comparison.

• semi-DFF. Regression loss and semantic loss are employed
to learn the temporal module via a two-step optimization
method in our semi-DFF, and this is the default model we
refer to unless otherwise specified.

The evaluation results of all these methods are show in Table
1. R-FCN frame is a strong baseline and achieves the best results
(59.3% mAP) among all these methods. Simple method as R-FCN
copy can largely improve inference speed, but brings in large ac-
curacy decrease (5.4% decrease in mAP). R-FCN flow slightly im-
proves R-FCN copy using pre-trained FlowNet to approximate the
feature flow. However, feature flow evolves more slowly than opti-
cal flow. Our proposed semi-DFF can largely improve detection ac-
curacy by learning better feature flow from unlabeled videos, and
also enjoy high running speed (4× speedup and only 0.6% mAP
decrease compared to the strong R-FCN frame).

We also explore deep into the semi-DFF. Simply using feature
regression loss like prior works on unsupervised optical flow es-
timation [58] can get a rather good feature flow. However, as we
analyse in section 3.4, using regression loss is not easy to learn
suitable feature flow for our detection task (1.8 % mAP lower than
R-FCN frame). Our proposed semantic loss forces feature flow to
preserve the semantic knowledgewhen propagating, and improves
mAP by 0.6%. We then further combine these two losses in a two-
step optimization manner to train our temporal module, and can
obtain another gain of 0.5%. Note that the gain is significant con-
sidering the small gap between the strong baseline R-FCN.

We also compare our semi-DFFwith other state-of-the-art meth-
ods in Table 2. YOLOv2 [41] and SSD [35] are trained following
their original papers using the labeled images, and are evaluated in
a densely frame-by-frame manner. These methods are faster than

our semi-DFF. On the other hand, our method, based on R-FCN,
are especially good at accurate detection while still maintaining
real-time speed. Moreover, semi-DFF is independent of detection
architecture design, and can further benefit SSD and YOLOv2 by in-
troducing the temporal module. We leave this for the future work.
Our method is also closely related with DFF. Here we train DFF
with additional labeled videos using ‘DFF fix N’ method in [63].We
find that DFF only slightly outperform R-FCN frame and semi-DFF
given additional labeling in videos. Our method is a very strong
competitor when no labels are available in videos.

Ablation experiments. We also conduct comprehensive abla-
tion studies of semi-DFF in this experimental setting in Table 3.

First, we explore the generative encoder-decoder architecture
for feature prediction except our flow-based network. To ease the
learning of directly predicting future CNN features, we adopt resid-
ual learning framework [18] since CNN features of nearby frames
are very similar. We use the current and future frames to predict
changes (residual) of high-level features between them. We use
feature regression loss for training. Results are shown in Table 3a.
Generativemethod obtains meaningful results compared to R-FCN
copy, but is inferior to our flow-based method. Estimating motions
is more effective for feature prediction between adjacent frames.

We also compare different feature regression methods in Table
3b. Steady feature loss [24] assumes that features change in a sim-
ilar manner in adjacent time intervals. We thus employ triplet of
video frames with equal temporal interval and learn feature flow
using this regularization. However, this assumption is too weak
than to directly supervise the predicted feature, and we do not ob-
serve meaningful results in our experiments. In addition, we also
compare L1 and L2 regression, and observe better for the latter.
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Thenwe study deep into our feature semantic loss.We first anal-
yse the effect of each term in our semantic loss. The result is shown
in Table 3c. We find that all three kinds of knowledge are crucial
for final mAP. Temperature T is another important parameter in
our semantic loss, we find that our method is insensitive to it and
achieves pretty good results for a wide range of T in Table 3d. For
largeT (e.g. 10 or∞), we observe a slightly decrease in mAP. So we
setT = 1 by default in our experiments.We then explorewhich lay-
ers to train in Table 3e. Only training the temporal module already
achieves good results, and fine-tuning the task network (RPN and
FRCN in R-FCN) can obtain another 0.2% gain in mAP. However, if
we also fine-tune the feature extraction network in spatial module,
we find that it’s hard to converge and get worse results.

We also explore how to incorporate the two learning loss for
our temporal module in Table 3f. We find that our two-step opti-
mization can gain an improvement of 0.6% mAP compared to the
joint learningmethod. In joint training, it’s hard to tune the weight
between feature regression loss and semantic loss.

Finally, we investigate the speed and accuracy trade-offs for dif-
ferent key-frame intervals in Table 3g. Overall, semi-DFF achieves
significant speedupwith decent accuracy drop, and smoothly trades
in accuracy for speed flexibly. We also notice that too large inter-
vals (∆T >= 10) can not provide meaningful acceleration. There-
fore we recommend the default key-frames interval of 10 frames
in our experiments.

4.2 True labels for both images and videos
In this experiment, we have ground truth labels both for static
images in ImageNet DET training set (53639 training images) as
well as sparse labeled frames for videos in ImageNet VID train-
ing set (57834 selected frames are labeled from the raw 3862 video
snippets, as in [63]), totally 111473 training images. Similar train-
ing method is adopted for all methods as in Section 4.1 except for
longer training iterations. Note that labels for sparse frames in VID
is only used to expand the training set of R-FCN in semi-DFF, and
we do not employ any human labels in our second stage training.

Different to the training set in DET, there are more variant of
objects in VID dataset, e.g., rare pose, partial occlusion and mo-
tion blur [9, 62]. Given labeled frames in VID dataset, we can learn
better spatial module suitable to the video scene. The evaluation
results of all these methods are shown in Table 4. We can observe
an improvement of 10% ∼ 15% in mAP for all methods due to bet-
ter spatial module. Concretely, our R-FCN baseline achieves 74.1%
mAP which is the best among all the methods. Our semi-DFF ob-
tains 72.65%, only 1.5% lower than R-FCN frame but 4× faster. Us-
ing feature semantic loss and two-step joint training obtain similar
improvement as in section 4.1. Our model also gives a variety of
speed and accuracy trade-offs by varying ∆T .

Compared to other state-of-the-art methods, our semi-DFF also
obtains meaningful improvements. First, compared to simple base-
lines, e.g., R-FCN copy and R-FCN flow, our semi-DFF achieves
significant improvement (7% and 5.3% mAP higher respectively).
Second, we find that single stage object detectors do not perform
well on large scale of imagesets as demonstrated on COCO dataset
by prior works [35, 41]. Our semi-DFF achieves similar large ad-
vantage compared to YOLOv2 and SSD by 12.6% and 7.1% mAP

Approach mAP (%) pretrained FlowNet
R-FCN frame 74.10
R-FCN copy 65.61
R-FCN flow 67.32 ✓
YOLOv2-416 60.00

SSD300 65.54
DFF [63] 70.54
DFF [63] 72.93 ✓

semi-DFF reg 71.14
semi-DFF sem 71.96
semi-DFF 72.65

semi-DFF (∆T = 5) 73.59
semi-DFF (∆T = 15) 71.31
semi-DFF (∆T = 20) 70.42

semi-DFF++† 73.23

Table 4: Performance comparison on the ImageNet VID validation
set. All methods use training data both on ImageNet DET training
set (only boxes of categories in VID are used) and ImageNet VID
training set (use sampled frames as in [63]). We compare semi-DFF
with a variety of state-of-the-art methods as in section 4.1. †: we use
more unlabeled videos for training in semi-DFF++.

respectively. Third, we also compare our method with state-of-the-
art video object detector DFF. Our experimental setting is very
suitable for DFF. DFF learns R-FCN and the flow network jointly
with labeled videos, and achieves 0.3 mAP higher than ours. Note
that DFF and our semi-DFF use the same amount of training data
here while DFF employs pre-trained FlowNet on synthetic Flying
Chairs dataset [7] for initialization. Thus we also conduct exper-
iments for DFF without initialization for equal competition. DFF
only achieves 70.54%, 2.1% mAP lower than semi-DFF. This im-
plies that DFF needs a good initial point for better results. Further-
more, we train semi-DFF++ using more unlabeled video data (3×
more training data) in ImageNet VID training set and correspond-
ing more training iterations, and achieve 73.23% mAP, 0.3% higher
than DFF. This demonstrates that our semi-supervised learning
framework is more promising compared to original DFF.

5 CONCLUSION AND FUTUREWORK
We propose to learn fast and accurate video object detector by de-
coupling the spatial and temporal modules, and train our detector
in a two-stage semi-supervised framework. In the first stage, we
learn the spatial module to recognize objects in key frames via su-
pervised learning. In the second stage, we learn the temporal mod-
ule to recognize objects in adjacent frames fast and accurately via
unsupervised learning. Our method is promising for it bridges the
gap between object detectors in image and video domain, and can
easily learn video object detectors given a pre-trained image ob-
ject detector.We conduct comprehensive experiments in ImageNet
VID dataset and demonstrate the effectiveness of our method.

For futurework, we can trymuch larger dataset in [40] and learn
better temporal module with more unlabeled videos. Furthermore,
our method can also benefit other video based recognition tasks
such as video semantic segmentation, which is also interesting to
explore in the future.
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