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ABSTRACT

General object detection is one of the most challenging tasks
in computer vision for it requires both high running speed and
detection accuracy. In this paper, we propose a single shot
object detector with top-down refinement, denoted as SSD-
TDR. It not only runs at high speed and also detects multi-
scale objects accurately. Concretely, original SSD directly
adopts the built-in multi-scale hierarchy of convolutional neu-
ral networks for detection. However, object detection needs
high semantic knowledge to recognise objects while low-level
convolutional features do not have. We thus build a sequence
of top-down refinement modules to transmit semantic knowl-
edge backward such that all layers have rich semantics. Ex-
periments on PASCAL VOC 2007 and 2012 demonstrate that
our network achieves competitive results both in speed and
accuracy compared to other VGG16 based networks.

Index Terms— convolutional neural network, general
object detection, single shot detector, top-down refinement,
multi-scale detection

1. INTRODUCTION

Recently computer vision community has been revolution-
ized by deep convolutional neural networks (DCNNs) [1]. In
general object detection, tremendous progress has been made
due to the use of DCNNs. State-of-the-art object detection
networks[2] such as Faster R-CNN [3], R-FCN [4] and SSD
[5] achieve both high detection accuracy and running speed
in several object detection benchmarks.

In Faster R-CNN and R-FCN, object detection is divided
into two stages: Region Proposal Network (RPN) and RoI-
wise Classification Network (RCN). Proposals are first gen-
erated through a RPN network and then those candidates are
further classified and refined by a RCN network, which is
too time-consuming. R-FCN shares per-region computation
in RCN using position-sensitive pooling and achieves compa-
rable accuracy to Faster R-CNN with faster speed. But it still
cannot meet the requirement of real-time detection. While
SSD, evolved from Faster R-CNN and YOLO [6, 7], em-
ploying a single feed-forward convolutional network to di-
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Fig. 1: Overview of our single shot object detector. Firstly we for-
ward convolutional neural networks to build pyramidal multi-scale
features. Then top-down refinement modules are adopted to enrich
semantic infomation at all scales. Finally, objects are detected at all
layers simultaneously.

rectly predict bounding boxes and their classes, thus lead-
ing to faster running speed than the previous two models.
SSD still maintains high detection accuracy by simultane-
ously detecting multi-scale objects from multiple feature lay-
ers. Moreover, a variant of networks derived from SSD also
achieve state-of-the-art results in many other computer vi-
sion problems beyond object detection, for example, [8] uses
SSD-style network to estimate the 3D pose of objects and
Textboxes [9] adopts SSD architecture for text localization.

However, there are still problems for accurate localiza-
tion in SSD especially for small objects. Concretely, these
three detection networks including SSD are all fine-tuned
from modern DCNNs such as VGGNet [10] and ResNet
[11]. They are all bottom-up, feed-forward architectures
and use repeated convolutional layers and pooling layers to
learn strong feature representations for the input image. In
DCNNs, higher layers are usually more effective to capture
high-level semantic knowledge, but insufficient for capturing
fine-grained spatial details due to its low resolution through
repeated pooling layers. Small objects usually have very
small features maps on higher layers which is too coarse for
localization. While lower layers feature maps have relatively
large resolution but less semantic knowledge which is not
accurate enough for small object detection.

To solve these problems, [12, 13, 14] proves that seman-
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Fig. 2: The architecture of our SSD-TDR. Our model is based on VGG16. On top of conv5 3, several feature layers are added to build multi-
scale feature maps. Moreover, TDR modules are adopted to refine these feature maps. Originally in SSD, multi-scale objects are predicted on
layers conv4 3, conv7, conv8 2, conv9 2, conv10 2 and conv11 2 independently. In SSD-TDR, feature maps from layer conv4R to conv10R
together with conv11 2 are responsible for final multi-scale object detection.

tics and context information help a lot for detection including
small scale objects. [15, 16, 17, 18] use skip connections to
directly combine multi-layer features for final strong repre-
sentations. Thus semantic knowledge and context informa-
tion are fused into high-resolution lower layer feature maps.
Another method is to use top-down refinement, such as FPN
[19], TDM [20] and SharpMask [21]. Skip connections is
a special case of this process [20]. In FPN and TDM, fea-
ture pyramids generated in forward pass are gradually sup-
plemented with rich semantic knowledge at all scales by top-
down refinement. After that two-stages Faster R-CNN are
adopted for detection. SharpMask adopts similar top-down
modulation to generate high-fidelity object masks.

In this paper, we propose a novel single shot object de-
tector with both bottom-up and top-down passways. Firstly,
initial multi-scale feature maps are built through a bottom-up
feedforward. Then top-down refinement (TDR) modules are
followed to enrich the semantic representation on each level
of the feature pyramids. Finally, multi-scale objects are gen-
erated simultaneously on multiple feature layers. In addition,
our network can be easily trained in a two-step manner. Ex-
periments on PASCAL VOC 2007 and 2012 demonstrate that
top-down refinement is effective to improve detection accu-
racy including small scale objects in our single shot network.
Our main contribution is in two folds:

• We propose a novel top-down refinement to supply-
ment the standard single shot detector. Thus we predict
bounding boxes on multi-scale feature maps all with
high semantics and context knowledge.

• We achieves 78.3% and 76.2% mAP on VOC 2007 and
2012 respectively. Moreover, our network runs at 28
fps on TITAN X GPU due to our single shot architec-
ture design. Both detection accuracy and running speed

is competitive to other existing state-of-the-art VGG16
based object detection networks.

2. OUR APPROACH

2.1. Architecture

Whole pipeline. The detailed architecture of our detection
network is shown in Figure 2. We use the à trous VGG16-
net as our backbone network, keeping layers from conv1 1 to
conv5 3 the same. Then change the stride of layer pool5 to 1,
and change last two fully connection layers into dilated con-
volutional layers and subsampling the parameters as in [5].
On top of layer conv7, we build a few extra convolutional
and pooling layers from conv8 1 to conv11 2 which progres-
sively decrease spatial resolution. Then we add a sequence of
top-down refinement modules from conv11 2 to conv4 3 to
transmit semantic knowledge and context information gradu-
ally to lower layers. Thus all feature layers capture high-level
infomation which is crucial for accurate object detection. Af-
ter that, we predict multi-scale objects on all levels of our
feature maps respectively. Finally we aggregate the predicted
bounding boxes and use non maximum suppresion (NMS) to
achieve final detection results.

Top-down refinement modules. Our top-down refine-
ment module is shown in Figure 3. The inputs of our top-
down module come from two parts. One is the feature maps
generated in the feed-forward pass. The other is the refined
features from the top-down way. Then these features are com-
bined using our top-down refinement module. However, re-
fined features from high-level usually have low-resolution,
so deconvolutional layers are adopted to upsample features.
Moveover, the corresponding bottom-up features usually have
large feature channels, so we employ 1× 1 convolution to re-
duce channel numbers such that it has the same channel di-
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Fig. 3: Details of our TDR module. Bottom-up features and top-
down features are combined through lateral connections.

mensions with top-down features. We also observe that lower
layers, for example in VGGNet, usually has large responses,
L2-normalization [22] is preferred before feature combination
which leads to a faster converge and more stable training. Af-
ter that, features from two sides are concatenated along the
channel dimension and 3 × 3 convolution is followed to fuse
these features sufficiently. In our network, final features at
all levels are reduced to 256 channels. Similar modules are
conducted from layer conv10R to conv4R. The architecture
details are shown in table 1. Finally, we can get pyramid fea-
tures all with high simantic knowledge.

SSD SSD-TDR Feature sizename channel name channel
conv4 3 512 conv4R 256 38x38
conv7 1024 conv7R 256 19x19

conv8 2 512 conv8R 256 10x10
conv9 2 256 conv9R 256 5x5
conv10 2 256 conv10R 256 3x3
conv11 2 256 conv11 2 256 1x1

Table 1: Architecture details of SSD and SSD-TDR. The input im-
age is resized to 300x300. This table shows the layers responsible
for detection in SSD and SSD-TDR.

Object detection layer. Object detection layers are an-
other key components in our network. After getting refined
pyramid features, we directly build 3 × 3 convolutional lay-
ers independently on each feature map to predict multi-scale
bounding boxes. For example, in a final feature map with size
w × h, we predict a number of bounding boxes with multiple
aspect ratios and their classification scores for each category
at all of the w×h positions. Specifically, for bounding boxes,
we output the offset value relative to the default box coordi-
nates. Suppose that the default box G = (Gx, Gy, Gw, Gh),
our predicted box P = (Px, Py, Pw, Ph), and our predicted

offset values (∆x,∆y,∆w,∆h). The relationships are:

Px = Gx +Gw ∗∆x Py = Gy +Gh ∗∆y

Pw = Gw ∗ exp(∆w) Ph = Gh ∗ exp(∆h)
(1)

We apply this layer to several feature maps. Finally NMS is
adopted to aggregate outputs of all detection layers.

2.2. Training

As there are two basic components bottom-up and top-down
passways in our network, we introduce a two-step training
mechanism to optimize our model. In the first step, we train
our bottom-up network. We use different scales of default
boxes on each feature layers as in [5] to fit their receptive
fields. Then a default box is matched with a ground truth box
p if it has the highest jaccard overlap with p or their jaccard
overlap is higher than 0.5. The loss function is:

L(M, c, p, g) =
1

N
(Lconf (M, c) + αLloc(M,p, g)) (2)

where M is the match matrix, c is the predicted confidence,
p and q are predicted and ground-truth location, N is the
number of matched default boxes. Non-matched boxes are
ignored when calculating training loss. The confidence loss is
the softmax loss over multiple classes. Smooth L1 loss [23] is
adopted for localization loss. In the second step, we integrate
top-down refinement modules into the trained bottom-up net-
work. The loss function is the same as the first step. Newly
added layers adopt “Xavier” initialization and are trained
alone first, then whole network is jointly trained end-to-end.

2.3. Implemetation details

Our implementation is based on the publicly available code
of SSD. The input image is resized to 300 × 300. Training
images are augmented with random crop, color distortion and
horizontal flip. We adopt synchronized SGD training on 2
GPUs, each with 16 images in a mini-batch. We use a weight
decay of 0.0005 and a momentum of 0.9. In the first step, we
adopt the same learning rate stategies as SSD.In the second
step, we firstly train newly added layers alone. The learning
rate is 10−3 for 20k mini-batches, 10−4 for next 10k. Then
whole network is jointly trained. The learning rate is 10−3 for
20k mini-batches, 10−4 and 10−5 for next 20k and 10k mini-
batches respectively. We also adopt hard negative mining to
pick negative examples with large confidence loss such that
the ratio of negatives and positives is at most 3:1.

2.4. Comparision with state-of-the-art networks

Concurrent with our work, TDM proposes top-down modu-
lation to replace skip connections for transmitting semantic
features backward. However, it generates proposals only on
the final high resolution feature map. We argue that different
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Approach mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
Faster R-CNN 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6
ION 79.2 80.2 85.2 78.8 70.9 62.6 86.6 86.9 89.8 61.7 86.9 76.5 88.4 87.5 83.4 80.5 52.4 78.1 77.2 86.9 83.5
YOLOv2-416 76.8 78.4 85.1 75.8 64.7 46.8 84.6 86.0 89.9 56.4 80.9 75.5 88.9 88.2 85.6 77.4 49.1 77.7 80.7 88.1 76.8
SSD-300† 77.7 79.2 84.0 75.7 70.0 50.9 86.7 86.0 88.6 60.1 81.4 76.8 86.3 87.3 84.2 79.5 52.7 79.4 79.4 87.7 77.2
SSD-TDR-300 78.3 80.0 85.1 78.1 71.4 50.2 86.7 86.4 88.6 61.7 82.9 77.0 86.3 87.3 86.0 79.8 54.1 80.3 77.9 88.1 77.3

Table 2: PASCAL VOC 2007 test detection results. All methods are based on VGG16 and trained with 2007trainval+2012trainval. Mean
average precision and running speed are shown for a variety of methods. † Our own reproducing of SSD-300, slightly higher than [5].

Approach FPS mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
Faster R-CNN 7 70.4 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5
ION 0.87 76.4 87.5 84.7 76.8 63.8 58.3 82.6 79.0 90.9 57.8 82.0 64.7 88.9 86.5 84.7 82.3 51.4 78.2 69.2 85.2 73.5
YOLOv2-544 40 73.4 86.3 82.0 74.8 59.2 51.8 79.8 76.5 90.6 52.1 78.2 58.5 89.3 82.5 83.4 81.3 49.1 77.2 62.4 83.8 68.7
SSD-300 46 75.7 88.0 82.6 74.5 61.7 47.4 83.0 78.9 91.4 58.1 80.0 63.8 89.3 85.4 85.4 82.5 50.2 79.6 73.5 86.6 72.2
SSD-TDR-300 28 76.2† 87.1 83.5 75.3 62.3 48.4 83.3 79.0 90.8 60.0 81.5 64.5 88.9 86.4 86.8 82.4 50.6 81.5 73.3 86.2 72.1

Table 3: PASCAL VOC 2012 test detection results. All methods are based on VGG16 and trained with 2007trainvaltest+2012trainval. †

http://host.robots.ox.ac.uk:8080/anonymous/PDC8PS.html

feature layers naturally have different receptive fields [24, 25]
which is more suitable for certain scale object detection.

FPN is also based on two-stages Faster R-CNN frame-
work. It exploits the multi-scale hierarchy of ConvNets with
top-down architecture. In our model, we use slightly differ-
ent lateral connections in the top-down passway for VGGNet
compared to FPN. Moreover, as far as we know, our paper is
the first to demonstrate that single shot detector benefits from
top-down refined features and runs much faster than FPN.

3. EXPERIMENTAL RESULTS

Datasets. We comprehensively evaluate our method on PAS-
CAL VOC detection benchmark [26]. There are 5011 trainval
images, 4952 test images over 20 object categories in VOC
2007 and 11540 trainval images, 10991 test images over the
same 20 categories in VOC 2012.

Evaluation Protocol. We adopt the standard mean av-
erage precision (mAP) evaluation for object detection. De-
tections are judged true/false based on the Intersection over
Union (IoU) between predicted and ground-truth boxes. In
PASCAL VOC, we evaluate mAP at IoU=0.5.

PASCAL VOC 2007 results. We evalute our network
on PASCAL VOC 2007 test, trained on VOC 2007 trainval
together with VOC 2012 trainval (16551 trainval images in
total), which is the common pratice. The results are shown in
table 2. The input image is resized to 300×300. Our network
SSD-TDR-300 achieves 78.3% mAP, 0.6 points higher than
original SSD300 × 300, and 1.5 points higher than YOLOv2
regardless of its higher input resolution 416 × 416. Specif-
ically, detection on 14 classes out of the total 20 classes in-
cluding small scale objects such as “plant” is improved when
compared to original SSD300 × 300. This indicates that our
top-down refinement helps a lot for accurate object detection
among a wide variety of object scales. Moreover, our method
also achieves significant higher mAP than those two-stages R-

model model size (MB) mAP
SSD-300 105.2 77.7

SSD-300 more convs 113.1 77.6
SSD-TDR-300 112.5 78.3

Table 4: Effects of the top down connections in our model on VOC
2007 test dataset.

CNN based networks, 5.1 points higher than Faster R-CNN.
We also notice that ION has 0.9 points higher mAP than us
because it adds bells and whistles to its network, such as seg-
mentation labels and iterative bounding-box regression.

PASCAL VOC 2012 results. We also evaluate on the
slightly more challenging VOC 2012 test. The evalution re-
sult is shown in table 3. We can observe similar results with
VOC 2007 test. Moreover, Our network runs about 28 fps on
TITAN X GPU. This indicates that our method is the top de-
tection method both in speed and accuracy compared to other
VGG16 based networks.

Ablation experiments. Table 4 shows the ablation re-
sults of SSD-TDR without top down connections. Additional
convolutions are retained to keep similar model size. How-
ever, these additional parameters benefit little to perfermance,
which demonstrates the effectiveness of our TDR design.

4. CONCLUSIONS

In this paper, we propose a single shot object detection
network with top-down refinement. Top-down refinement
combines high-level semantic knowledge with low-level fine-
grained features. Thus we build pyramid features all with
rich sematic knowledge. Experiments on PASCAL VOC
2007 and 2012 demonstrate the effectiveness of our top-down
refinement design. Moreover, we also obtain high running
speed about 28fps for 300× 300 images which is practicable
for real-time applications.
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